注册 | 登录
  • 首  页
    |
  • 关于学会
    |
  • 网上入会
    |
  • 学术年会
    |
  • 学会论文
    |
  • 学会课题
    |
  • 学会报告
    |
  • 学会活动
    |
  • 产学研基地
    |
  • 特约研究员
    |
  • 资料中心
    |
学会介绍 学会章程 会员管理服务及收费办法 组织机构 学会领导 专家委员会 学会年度工作计划 学会文件 联系方式
入会须知 注册会员 理事申请表下载 会费标准及缴纳方式
关于年会 历届年会回顾 最新年会动态 最新学术年会征文 历届获奖名单 特约评委申报 关于分论坛 分论坛申请 历届分论坛
征文通知 征文提交 物流经济 物流管理 物流技术与工程 采购 供应链管理 英文文献
课题介绍 课题通知 课题计划 历年获奖课题 课题申报 课题结题 课题申报书下载 课题延期申请表下载 研究报告格式规范下载 结题报告模板下载
关于报告 中国物流发展报告 中国物流重点课题报告 中国物流学术前沿报告 中国物流园区发展报告 中国冷链物流发展报告 生产资料流通发展报告 中国采购发展报告
中国物流发展报告会 全国物流园区工作年会 物流企业财税与投融资工作会 产学研结合工作会 中国物流学术年会 日日顺创客训练营
管理办法 产学研基地动态 申请表下载 申请表提交 基地复核 产学研会议信息
管理办法 申请流程 聘任条件 申请表下载 特约研究员相关文件
学会工作动态 物流政策及评论 学术年会论文 学术年会资料 学会报告 会员通讯 领导讲话 学会文件 学会课题 其他
  • 2005年
  • 2006年
  • 2007年
  • 2008年
  • 2009年
  • 2010年
  • 2011年
  • 2012年
  • 2013年
  • 2014年
  • 2015年
  • 2016年
  • 2017年
  • 2018年
  • 2019年
  • 2020年
  • 2021年
  • 更多...
当前位置:首页 > 资料中心 > 学术年会论文 > 英文文献 > 2010年
The Design of Uncapacitated Single Allocation Hub-and-spoke Networks Based on Hybrid Algorithm
来源: 时间:2012/10/30 23:11:37 作者:Dali JIANG
  

ABSTRACT

Thispaper describes a newly developed hybrid heuristic for solving theuncapacitated single allocation hub location problem (USAHLP). The hybrid IGAalgorithm integrates fuzzy Iterative Self Organizing Data (ISODATA) clusteringwith a genetic algorithm (GA). The candidate hub nodes are first determined byemploying fuzzy ISODATA clustering, then the satisfactory hubs among thecandidates by the presentation and evolution of chromosomes are searched bygenetic algorithm, making the total cost including collection, transfer,distribution, and the costs of establishing hubs as minimized as possible. Thisnew hybrid algorithm is simple to use to optimize practical transportation networks.  It is applied to redesign a new logisticsnetwork for a large logistics company in Hebeiprovince, which needs to merge its old freight network and express network intoone logistic system. 30% decrease in the total logistics cost for the newnetwork proves its effectiveness.

Introduction

Hub-and-spoke networks provide services via aspecified set of hub nodes so as to reduce the overall transportation cost. Allhubs, which act as switching points for intermodal flows, are interconnectedand none of the non-hubs are directly connected. Each of the other non-hub nodesis allocated to a single hub or multiple hubs and is referred to as a spoke.With its improvement to operation of distribution function, hub-and-spokenetworks are widely studied in the area of logistics, such as package delivery(Kuby et al., 1993), goods supply (Abdinnour-Helm, 2001), trucking (Tayloret al., 1995)and intermodaltransportation (Racunica et al., 2005). Many types of hub-and-spoke networks have been researched since thefirst problem was formulated by O’Kelly (1987) and Campbell (2002). One of themost commonly encountered problems in practice is the uncapacitated singleallocation hub location problem (USAHLP). In this kind of problem, thenumber of hubs is not predetermined, there are no capacity restrictions on thevolume of a hub, each spoke (non-hub node) is allocated to a single hub node,the objective function is to find the location of the hubs and the allocationof the nodes so that the total cost including collection, transfer,distribution, and the costs of establishing hubs is minimized. Because USAHLPis NP-hard (O’Kelly, 1987), many heuristics are proposed. O’Kelly (1992)devised a problem specific heuristics composed of two steps which involves anestimate of a good upper bound and the computation of a tight lower bound on thesolution. Smith et al.(1996) mapped the problem onto a Hopfield neural network which guarantees feasibilityof the final solution and proposed a novel modification to the Hopfield networkwhich enables escape from local minima. Abdinnour-Helm (1998) developed a hybridof Genetic Algorithms (GAs) and Tabu Search (TS), in which Gas are used todetermine the number and the locations of hubs, TS is used to find the optimalassignment of spokes to hubs. Topcuoglua et al. (2005) provided the node whichhas higher amount of flow to become a hub with higher probability and used thechromosome consisting of two arrays: HubArray and AssignArray to search theoptimal solution with genetic algorithm.  

需要[2]积分

阅读全文

关于我们 | 媒体互动 | 站点留言 | 友情链接 | 在线投稿 | 网站地图

地 址: 北京市丰台区丽泽路16号院2号楼铭丰大厦1601(100073) 电 话:010-83775681 E-mail:CSL56@vip.163.com
Copyright 2000-2019 in 中国物流与采购联合会、中国物流学会版权所有 技术支持:中国物流与采购联合会网络事业部
中国物流与采购网:京ICP备05024070号 中国物流联盟网:京ICP备05037064号