注册 | 登录
  • 首  页
    |
  • 关于学会
    |
  • 网上入会
    |
  • 学术年会
    |
  • 学会论文
    |
  • 学会课题
    |
  • 学会报告
    |
  • 学会活动
    |
  • 产学研基地
    |
  • 特约研究员
    |
  • 资料中心
    |
学会介绍 学会章程 会员管理服务及收费办法 组织机构 学会领导 专家委员会 学会年度工作计划 学会文件 联系方式
入会须知 注册会员 理事申请表下载 会费标准及缴纳方式
关于年会 历届年会回顾 最新年会动态 最新学术年会征文 历届获奖名单 特约评委申报 关于分论坛 分论坛申请 历届分论坛
征文通知 征文提交 物流经济 物流管理 物流技术与工程 采购 供应链管理 英文文献
课题介绍 课题通知 课题计划 历年获奖课题 课题申报 课题结题 课题申报书下载 课题延期申请表下载 研究报告格式规范下载 结题报告模板下载
关于报告 中国物流发展报告 中国物流重点课题报告 中国物流学术前沿报告 中国物流园区发展报告 中国冷链物流发展报告 生产资料流通发展报告 中国采购发展报告
中国物流发展报告会 全国物流园区工作年会 物流企业财税与投融资工作会 产学研结合工作会 中国物流学术年会 日日顺创客训练营
管理办法 产学研基地动态 申请表下载 申请表提交 基地复核 产学研会议信息
管理办法 申请流程 聘任条件 申请表下载 特约研究员相关文件
学会工作动态 物流政策及评论 学术年会论文 学术年会资料 学会报告 会员通讯 领导讲话 学会文件 学会课题 其他
  • 2005年
  • 2006年
  • 2007年
  • 2008年
  • 2009年
  • 2010年
  • 2011年
  • 2012年
  • 2013年
  • 2014年
  • 2015年
  • 2016年
  • 2017年
  • 2018年
  • 2019年
  • 2020年
  • 2021年
当前位置:首页 > 资料中心 > 学术年会论文 > 英文文献 > 2015年
Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming model
来源: 时间:2015/12/21 10:24:38 作者:
  


ZhuoDai   Xiaoting Zheng

 

Schoolof Electronic Commerce, Jiu Jiang University,551 Qianjin East Road,332005, Jiu Jiang City, JiangXiProvince, China

 

Correspondingauthor: Zhuo Dai

 

Abstract:The design of closed-loop supply chain network isone of the important issues in supply chain management. This research proposesa multi-period, multi-product, multi-echelon closed-loop supply chain networkdesign model under uncertainty. Because of its complexity, a solution frameworkwhich integrates Monte Carlo simulationembedded hybrid genetic algorithm, fuzzy programming and chance-constrainedprogramming jointly deal with the issue. A fuzzy programming and chance-constrainedprogramming approach take up the uncertainty issue. Monte Carlo simulationembedded hybrid genetic algorithm is employed to determine the configuration ofCLSC network. Parameters of GA are chosen to balance two aims. One aim is thatthe best value is global optimum, that is, maximum profit. The other aim is thatthe computational time is as short as possible. Non-parametric test confirmsthe advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impactsof uncertainty in disposed rates, demands, and capacities on the overall profitof CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network underuncertain environment.

Keywords: close-loop supply chain; network design;uncertainty; Monte Carlo simulation embedded hybridgenetic algorithm; fuzzy programming; chance-constrained programming 

1. Introduction

An efficient supply chain can reduce costs and increase the profitof a company. One of the most important aspects of supply chain networkmanagement is supply chain network design. The problem of supply chain design whichconsiders both the efficiency and the risk was put forward by Huang and Goetschalckx(2014). They identified all Pareto-optimal configurations efficiently using branchand reduce algorithm. 

In recentyears, people have begun to pay attention to environmental and socialresponsibilities and the economic benefits of used products, which make peopleattach importance to reverse supply chain network (Meade et al. 2007). Becauseof interdependent decisions in forward and reverse supply chain network,considering them separately lead to sub-optimal results (Pishvaee and Torabi2010). Therefore, decisions of forward and reverse supply chain network shouldbe considered simultaneously (Lee and Dong 2008). When a forward and reverse logisticsnetwork is considered simultaneously, a closed-loop supply chain (CLSC) networkwill be established. The aim of CLSC network is setting up an efficient systemfor bidirectional material flows considering environmental and economic effects.

Another important issue in designing supplychain network is uncertainty. The longer the time is,the higher the uncertainties are. In the CLSCnetwork, the uncertain problem is more serious due to the inherent uncertainty ofreverse logistics network, which is caused by uncertain factors such asquantity and quality of the used products (Pishvaee et al. 2011). Furthermore,uncertainties will be magnified through combinations and interactions among theabove uncertainties. Therefore, the issues of uncertainties should beconsidered and solved.

To address the issues of uncertainties, inexact optimization techniquesare employed in a mix-integer programming framework, for example, interval programming(Zhang et al. 2011), fuzzy programming (Vahdani et al. 2012) and stochastic programming(Kerachian and Karamouz 2007). Environmental coefficients are often fuzzy for mostproblems of supply chain network design because of incomplete information.Conventional methods cannot solve these problems. Zadeh (1965) put forwardfuzzy set theory. Fuzzy set theory has been applied to many fields such asproduction planning of supply chain, design of supply chain and so on. Liangand Cheng (2009) studied manufacturing and distribution planning decisionproblems in supply chains using fuzzy set theory. Peidro et al. (2007) proposeda fuzzy mixed integer linear programming model for supply chain planning. Xuand Zhai (2010) considered a supply chain coordination problem under fuzzyenvironmental constraints. They found that the expected profit of supply chainin a coordination situation is more than the profit in a non-coordinationsituation. Stochastic programming handles uncertain problems whose parameters’ probabilitydistributions are known (Liu and Sahinidis 1996). There are two types ofapproaches in stochastic programming. The first type of stochastic programmingapproach is recourse programs. The second type of stochastic programmingapproach is chance-constrained programming, which was proposed by Charnes andCooper (1959). 

 http://csl.chinawuliu.com.cn/upload/files/635862907143155294.doc

需要[2]积分

阅读全文

关于我们 | 媒体互动 | 站点留言 | 友情链接 | 在线投稿 | 网站地图

地 址: 北京市丰台区丽泽路16号院2号楼铭丰大厦1601(100073) 电 话:010-83775681 E-mail:CSL56@vip.163.com
Copyright 2000-2019 in 中国物流与采购联合会、中国物流学会版权所有 技术支持:中国物流与采购联合会网络事业部
中国物流与采购网:京ICP备05024070号 中国物流联盟网:京ICP备05037064号