Special Issue: Viability of Supply Networks and Ecosystems: Lessons Learned From COVID-19 Outbreak
Guest editors
- Professor Dmitry Ivanov, Berlin School of Economics and Law, Germany
- Professor Alexandre Dolgui, Head of Automation, Production and Computer Sciences Dept., IMT Atlantique, France
- alexandre.dolgui@imt-atlantique.fr
- Professor Jen Blackhurst, The University of Iowa, USA
- jennifer-blackhurst@uiowa.edu
- Professor Tsan-Ming (Jason) Choi, Hong Kong Polytechnic University, Hong Kong
Key dates
Deadline of Manuscript Submission: 25 December 2020
Final Decision Due: 31 July 2021
Tentative Publication Date: 30 November 2021
Submit here: https://mc.manuscriptcentral.com/tprs
- Have the established SC resilience measures (Yoon et al. 2018, Hosseini et al. 2019), e.g., anticipatory and coping mechanisms such as risk mitigation inventories, subcontracting capacities, backup supply and transportation infrastructures, and data-driven, real-time monitoring and visibility systems helped the companies to survive and recover through the pandemic times?
- Is that the one most adaptable that will survive?
- Which impacts can be observed in light of SC sustainability triple bottom line?
- Adaptive supply networks
- Collaboration of humanitarian and business logistics for survivability
- Collaboration within SC ecosystems (firms, governments, healthcare) for viability
- Collective behavioral actions for SC viability
- Complex adaptive systems with applications to SC viability
- Dynamic analysis of the SC viability using control and simulation
- Ecological modelling approaches to SC viability
- Framing the SC viability and survivability concepts from the network theory perspective
- Flexible capacity and production systems to ensure long-term viability
- Forecasting the impacts of epidemic outbreaks on the SCs
- Game-theoretic modelling of the SC viability
- Impact and value of digital technologies, Industry 4.0, Big Data analytics, and additive manufacturing on SC viability
- Impact of the epidemic outbreaks on SC performance
- Manufacturing viability through resilience
- Network structures of SC ecosystems and their viability
- Optimization of network redundancy to ensure SC viability
- Re-start and recovery of the SCs after the long-term, global interruptions
- Ripple effect and SC viability
- Ripple effect in the intertwined supply networks
- SC sustainability and epidemic outbreaks
- Supply localization concepts within the global networks
- Survivability of intertwined supply networks
- SC re-design during and after the global epidemic outbreaks
- Viable SC designs: localization, globalization or hybrids?
- Viable production and sourcing strategies nature inspired computation
References
Basole, R.C. and Bellamy, M.A. (2014). Supply Network Structure, Visibility, and Risk Diffusion: A Computational Approach, Decision Sciences, 45(4), 1–49.
Choi T.-M., Taleizadeh A.A., Yue X. (2020). Game theory applications in production research in the sharing and circular economy era. International Journal of Production Research, 58(1), 118-127.
Choi TY, Dooley KJ, Rungtusanatham M (2001) Supply networks and complex adaptive systems: control versus emergence. J Oper Manag 19(3):351–366
Dolgui, A., Ivanov, D., Sokolov, B. (2018) Ripple Effect in the Supply Chain: An Analysis and Recent Literature. International Journal of Production Research, 56(1-2), 414-430.
Dubey, R., A. Gunasekaran, T. Papadopoulos (2019). Disaster relief operations: past, present and future. Annals of Operations Research 283 (1-2), 1-8
Fraccascia L., Giannoccaro I., Albino V. (2017). Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements. Ecological Economics, 137, 148-162.
Hosseini S., Ivanov D., Dolgui A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research: Part E, 125, 285-307.
Ivanov D. (2020) Predicting the impact of epidemic outbreaks on the global supply chains: A simulation-based analysis on the example of coronavirus (COVID-19 / SARS-CoV-2) case. Transportation Research – Part E, forthcoming
Ivanov D., Dolgui A. (2020). Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak. International Journal of Production Research, forthcoming
Ivanov D., Das A. (2020). Coronavirus (COVID-19 / SARS-CoV-2) and supply chain resilience: A research note. International Journal of Integrated Supply Management, forthcoming.
Wang J., Dou R., Dou, Muddada, R.R., W. Zhang (2018). Management of a holistic supply chain network for proactive resilience: Theory and case study. Computers and Industrial Engineering, 125, 668-677.
Yoon, J., S. Talluri, H. Yildiz, W Ho (2018). Models for Supplier Selection and Risk Mitigation: A Holistic Approach. International Journal of Production Research, 56(10), 3636-3661.
Zhao K., Zuo Z., Blackhurst J.V. (2019). Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. Journal of Operations Management, 65(2), 190-212.
特刊:供应网络和生态系统的生存能力:从COVID-19爆发中吸取的教训
特邀编辑
- Dmitry Ivanov教授,德国,柏林经济与政法大学
电子邮件:divanov@hwr-berlin.de(执行特邀编辑)
- Alexandre Dolgui教授,法国,大西洋高等矿业电信学校,生产和计算机科学系主任
电子邮件:alexandre.dolgui@imt-atlantique.fr
- Jen Blackhurst教授,美国,爱荷华大学
- Tsan Ming (Jason) Choi教授,香港,香港理工大学
电子邮件:jason.choi@polyu.edu.hk
关键日期
稿件提交截止日期:2020年12月25日
最终决定截止日期:2021年7月31日
暂定出版日期:2021年11月30日
在此处提交:https://mc.manuscriptcentral.com/tprs
关于该特刊
全球供应链(SC)和生产系统经历了一系列前所未有的由COVID-19病毒爆发引起的冲击,这是与最近所见的任何一次都不同的供应链中断的新诱因。由此引发的全球大流行和供应链崩溃为供应链研究人员和实践者提供了一系列全新的决策环境。本期特刊是由这些新的和具有挑战性的环境所推动的,旨在阐述一个新的概念——供应链生存能力是弹性、适应性和可持续性的交点。
COVID-19的爆发不仅对经济和社会的各个领域产生了巨大的影响,而且对供应链的恢复力也提出了考验。
- 是否制定了SC弹性措施(Yoon等 2018,Hosseini等2019)例如,预期和应对机制,如风险缓解清单、分包能力、备用供应和运输基础设施,以及数据驱动的实时监测和可视系统,帮助这些公司在大流行时期生存和恢复?
- 这是最能适应生存的吗?
- 根据供应链可持续性三重底线,可以观察到哪些影响?
对于一些供应链,需求急剧增加,供应无法应对这种情况(例如,口罩、洗手液、消毒喷雾)。因此,提出了市场和社会生存能力的问题。对于其他供应链,需求和供应急剧下降,导致停产(如汽车工业)、破产的危险和政府支持的必要性。在这里,供应链生存性的问题再次出现。很明显,这两个问题都超出了供应链弹性的现有技术水平,因为它们不能在狭隘的供应链视角下解决,而是需要考虑到相互关联的供应网络和生产系统进行更大规模的分析。
本专题旨在利用COVID-19案例,将供应链弹性和风险管理的角度扩展到供应链在长期和不可预测的全球破坏条件下的生存能力。生存能力是系统在不断变化的环境中满足生存需求的能力。冠状病毒COVID-19爆发的例子清楚地表明了这一新观点的必要性,在未来可以做出重大贡献。此外,COVID-19的例子清楚地证明了全球供应链中存在连锁反应——企业必须在全球范围内停止生产,以应对供应缺失、检疫措施和市场混乱(Dolgui等 2018,Ivanov 2020)。COVID-19的爆发表明,在特殊事件的情况下,供应链抵抗连锁反应的能力需要从生存能力的角度来考虑,以避免供应链和市场崩溃,确保商品和服务的供应。
从COVID-19疫情中得到的另一个教训是,克服单一供应链弹性的分析和研究整个行业和服务的生存能力问题同样具有挑战性。现实生活中的供应链并不是自主经营的,而是在企业部门内部甚至跨企业部门进行跨越和相互关联,形成供应生态系统或相互交织的供应网络(ISN)(Ivanov和Dolgui,2020)。例如,汽车供应链的传统理解是将汽车生产作为最终的输出目标。不同的是,汽车供应链生态系统的最终目标是为社会提供流动性服务。在电子工业中,传统的供应链理解将一些电子设备的生产视为期望的输出绩效,而电子供应链生态系统的绩效则与为社会提供通信服务密切相关。显然,在这样一个层面上对中断影响的分析关注的是长期保障社会的流动性和沟通,即确保生存能力,而不是像传统的供应链弹性分析那样,从收入或年销售额方面考虑单个供应链中断对绩效的影响。
Ivanov和Dolgui(2020)的研究在这方面引入了两个新概念——相互交织的供应网络(ISN)和生存能力。一个相互交织的供应网络(ISN)是一个相互连接的供应链的整体,其完整性确保了向社会和市场提供商品和服务。ISNs中的企业可能会通过改变相互关联甚至竞争的供应链中的买方-供应商角色而表现出多重行为(Zhao 等 2019)。其他相关的研究可以在复杂适应系统理论(Choi等 2001)和供应链结构动力学(Ivanov等 2010)中找到。Fraccascia等(2017)指出工业共生中存在多个交叉的供应链,其特征是利用一些供应链过程的废物作为其他供应链的输入。Choi等(2020)展示了共享经济和循环经济中不同形式的供应链互联。当几个商业和人道主义供应链共享仓库设施时,商业和人道主义物流是共生的(Dubey等 2019)。此外,不同产业部门的供应链相互交织。因此,合作、集体生存问题在非常特殊的条件下是非常重要的,也是新的研究领域。例如,汽车行业的供应商同时也是呼吸器阀门的生产商。这种对生存能力和相互交织的供应网络的综合考虑,主要是扩展了对供应链弹性的经典理解,因此,开发一种新的生存弹性思维成为一项及时而关键的研究任务。生存能力可以在特殊事件的情况下,扩展供应链的弹性角度,以提高存货能力(Ivanov和Das 2020)。在这种非常事件的背景下,供应链的生存能力超出了单纯的经济目标的实现,并将讨论带到了下一个层次,即保障地球生命安全的供应链绩效。此外,制造和生产系统的生存能力需要在更长的时期内得到保障。
所有这些思考清楚地表明,供应链生存能力是一个及时而关键的话题。该特刊需要有关供应链生存概念新的理解,新的理论和新的方法,它的前因,它的驱动因素,以及它的经济和社会绩效的影响。
感兴趣的话题
本特刊旨在探讨以下,但不限于的,潜在的主题:
- 自适应供应链网络
- 人道主义和商业物流的合作,以提高生存能力
- 在供应链生态系统(企业、政府、医疗保健)内进行合作,以提高生存能力
- 供应链生存能力的集体行为行动
- 复杂自适应系统及其在供应链生存能力中的应用
- 使用控制和仿真对SC生存能力进行动态分析
- 供应链生存能力的生态建模方法
- 从网络理论角度构建供应链生存能力和生存能力概念
- 灵活的产能和生产系统,确保长期的生存能力
- 预测疫情爆发对供应链的影响
- 供应链生存能力的博弈论建模
- 数字技术、工业4.0、大数据分析和增材制造对供应链生存能力的影响和价值
- 疫情爆发对供应链绩效的影响
- 通过弹性实现制造业生存
- 供应链生态系统的网络结构及其生存能力
- 优化网络冗余,确保供应链生存能力
- 在长期全球中断后,供应链的重新启动和恢复
- 涟漪效应和供应链生存能力
- 相互交织的供应网络中的涟漪效应
- 供应链可持续性和疫情爆发
- 在全球网络内提供本土化概念
- 相互交织的供应网络的生存能力
- 全球疫情爆发期间和之后的供应链重新设计
- 可行的供应链设计:本土化、全球化还是混合?
- 可行的生产和采购策略自然启发计算
参考文献
Basole, R.C. and Bellamy, M.A. (2014). Supply Network Structure, Visibility, and Risk Diffusion: A Computational Approach, Decision Sciences, 45(4), 1–49.
Choi T.-M., Taleizadeh A.A., Yue X. (2020). Game theory applications in production research in the sharing and circular economy era. International Journal of Production Research, 58(1), 118-127.
Choi TY, Dooley KJ, Rungtusanatham M (2001) Supply networks and complex adaptive systems: control versus emergence. J Oper Manag 19(3):351–366
Dolgui, A., Ivanov, D., Sokolov, B. (2018) Ripple Effect in the Supply Chain: An Analysis and Recent Literature. International Journal of Production Research, 56(1-2), 414-430.
Dubey, R., A. Gunasekaran, T. Papadopoulos (2019). Disaster relief operations: past, present and future. Annals of Operations Research 283 (1-2), 1-8
Fraccascia L., Giannoccaro I., Albino V. (2017). Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements. Ecological Economics, 137, 148-162.
Hosseini S., Ivanov D., Dolgui A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research: Part E, 125, 285-307.
Ivanov D. (2020) Predicting the impact of epidemic outbreaks on the global supply chains: A simulation-based analysis on the example of coronavirus (COVID-19 / SARS-CoV-2) case. Transportation Research – Part E, forthcoming
Ivanov D., Dolgui A. (2020). Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak. International Journal of Production Research, forthcoming
Ivanov D., Das A. (2020). Coronavirus (COVID-19 / SARS-CoV-2) and supply chain resilience: A research note. International Journal of Integrated Supply Management, forthcoming.
Wang J., Dou R., Dou, Muddada, R.R., W. Zhang (2018). Management of a holistic supply chain network for proactive resilience: Theory and case study. Computers and Industrial Engineering, 125, 668-677.
Yoon, J., S. Talluri, H. Yildiz, W Ho (2018). Models for Supplier Selection and Risk Mitigation: A Holistic Approach. International Journal of Production Research, 56(10), 3636-3661.
Zhao K., Zuo Z., Blackhurst J.V. (2019). Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. Journal of Operations Management, 65(2), 190-212.